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A generalized kinetic derivative nonlinear Schrédinger equation for the multidimensional dynamics
of Alfvén wave trains propagating along an ambient magnetic field is derived from the Vlasov-
Maxwell equations by a reductive perturbative expansion. It retains in addition to the Landau
damping, the coupling to longitudinally averaged fields driven by both transverse gradients and
kinetic effects. These mean fields that modulate the propagation speed of the wave play a main role in
transverse instabilities of extended Alfvén wave packets and in the filamentation phenomenon. This
long-wave model also provides a benchmark for Landau-fluid descriptions of collisionless plasmas.

PACS numbers: 52.30.Cv, 52.35.Bj, 52.35.Mw, 52.65.Kj, 94.30.Tz

I. INTRODUCTION

Alfvén waves propagating along an ambient magnetic field are ubiquitous in space plasmas and play an important
role in the physics of media such as the solar corona, the solar wind or the terrestrial magnetosheath. Their dynamics is
often addressed in the framework of the magnetohydrodynamics (MHD) or more generally of the Hall-MHD when the
fluctuation spectrum extends up to scales comparable to the ion gyromagnetic radius, making relevant the dispersive
effect due to ion inertia. Collisions are however essentially negligible in such media, and the usual fluid description is
thus questionable. On the other hand, direct numerical integrations of the Vlasov-Maxwell equations in three space
dimensions are in most situations much beyond the capabilities of the present day computers. This suggests the
development of a reduced description that, while retaining most of the aspects of a fluid description, incorporates
a realistic approximation of the Landau damping. Such models consist in a system of moment equations for mass
densities, momenta and gyrotropic pressure components. These equations involve heat fluxes, making the resulting
system unclosed. Additional relations between the fields are then heuristically supplemented, in a way that reproduces
the linear Landau damping. This approach, developed in the MHD regime by Snyder, Hammett and Dorland,! is
revisited in the companion paper (paper II).?

Closed asymptotic models for collisionless plasmas can however be derived in specific instances. Such an approach
was initiated three decades ago by Rogister? who applied a reductive perturbative expansion to the Vlasov-Maxwell
equations to isolate the dynamics of small-amplitude Alfvén waves with a typical length much larger than the ion
Larmor radius. This analysis led to a long-wave equation that is especially simple in one space dimension and was later
named “kinetic derivative nonlinear Schrédinger equation” (KDNLS) to refer to the linear Landau damping retained
by this asymptotics. This kinetic effect which originates from the resonant interactions with the particles leads to a
nonlocal contribution involving a Hilbert transform in the nonlinear terms of the equation. This long-wave model was
reproduced by Mjglhus and Wyller* who used a mixed approach where a reductive perturbative expansion is performed
in the framework of Hall-MHD with finite Larmor radius corrections,® but where the gyrotropic components of the
pressure are evaluated from the guiding center distribution function. An approach based on fluid moments with
Landau damping modeled by additional dissipation-like terms was also proposed.® Nonlinear Landau damping and
particle trapping in finite amplitude waves were also recently considered.”

In the case of quasi-monochromatic wave trains, the coupling to large-scale magnetosonic waves must be retained,
as first shown in the Hall-MHD context.® This coupling involves mean values along the direction of propagation
of the density and of the longitudinal velocity and magnetic field components. They vanish in the case of localized
solutions but were shown to play an essential role in the phenomenon of transverse collapse of a sufficiently extended
quasi-monochromatic Alfvén wave packet,'®!! resulting in the formation of intense magnetic filaments.'?13 It was
in particular established that in the long-wave limit absolute filamentation takes place when the (3 of the plasma
is larger than unity. In such warm plasmas, kinetic effects are however important. It is thus necessary to develop
a long-wave formalism that enables ones to address the Alfvén wave filamentation problem in a realistic setting.'*
The multidimensional KDNLS equations can in addition provide a tool to benchmark Landau-fluid models in regimes
going beyond linear instabilities.

In the present paper, a KDNLS equation valid in the case of multidimensional wave trains is derived by revisiting
Rogister’s reductive perturbative expansion,® avoiding in particular the Fourier mode decomposition. The expansion
is pushed to an order high enough to include the coupling to the mean fields driven by both transverse gradients
and kinetic effects. In the companion paper,? the present analysis is used as the starting point for the construction



and validation of a Landau-fluid model including Hall-effect that is expected to provide an efficient tool for realistic
simulations of dispersive Alfvén wave turbulence.

II. THE DYNAMICS OF LONG ALFVEN WAVES
A. The reductive perturbative expansion

The dynamics of Alfvén waves propagating along a strong ambient magnetic field are amenable to an asymptotic
expansion, directly from the Vlasov-Maxwell equation, when involving scales that are large compared to the ion
Larmor radius and amplitudes small enough to keep linear dispersive effects comparable to the nonlinearities.? For
this purpose, one writes the Vlasov-Maxwell equations in the form
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where f,. and n, are the distribution function and the average number density of the particle species r with charge g,
and mass m,.. As checked below, local neutrality of the plasma holds at all the relevant orders and the displacement
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current —0;e turns out to be negligible in the present analysis. This contribution which might be important for auroral
c

plasmas is retained by Verheest.!?
The reductive perturbation expansion proceeds like in the derivation of the derivative nonlinear Schrédinger (DNLS)

equation from the Hall-MHD equations.*®2 For an ambient field ByZ (where 7 is the unit vector pointing in the

z-direction), one expands the distribution function and the electric and magnetic fields in the form f, = £ 4

(2 +efY +..), b=DBeg+e(d® +eb® + ) and e = (e + ee@ + .., where F\”) denotes the equilibrium
velocity dlstrlbutlon function, assumed rotationally symmetric around the direction of the ambient field and symmetric
relatively to forward and backward velocities along this direction, thus excluding the presence of equilibrium drifts.'> 17
Denoting by A the Alfvén-wave propagation velocity that will be determined in the following, one defines the stretched
coordinates ¢ = €2(x — M), n = €3y and ( = €3z and the slow time 7 = €*t. It is also convenient to express the
velocity v in a cylindrical coordinate system by defining the velocity space angle ¢ = tan~!(v, /vy). One writes
v= (v, vicos$, vising) = (v|,v ) = (v|,7L and
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where 77 = (cos ¢, sin¢) and ¢t = ﬁ Furthermore, q—(v x BoZ) - Vy = —Q,.04, where Q, = 420
cm

is the cyclotron
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frequency of the particles of species r. It is also useful to note that 0,V, = V,04 + 2 x V,. Expanding to the
successive orders, one gets from eq. (1),
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where
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the second term of the right-hand-side (RHS) being absent when s = 0.
From eq. (2), one derives
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and more generally for any p > 0,
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It immediately follows from eq. (14) that b‘(| ) =0 and ef) = —%55 X bg(_)), where a zero mean value is assumed for

the transverse magnetic field bg?) when averaged over the & variable. Such a transverse mean field that when present

obeys the reduced MHD equations, is not created dynamically in the long-wave asymptotics that does not retain the
interactions between counter propagating waves.? '8

When averaged on the angle ¢, eq. (7) gives e‘(lo) = 0, and thus rewrites
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Defining for any positive integer j the operator
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and also D = DT, one writes
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where the last term of the RHS refers to a possible contribution independent of the ¢ variable, that will be later
shown to be identically zero.

The solvability condition for eq. (8) reads eH = 0. The parallel component of eq. (15) reproduces the divergenceless
condition
debf? + v b =0, (21)
- es oD A (D) (0)
while the transverse component gives e}’ = ——Z x b,’. Since this relation is the same as that relating e}
and b(f), one can prescribe e(f) = 0 and b(f) = 0. In particular, the modulus of the local magnetic field is
b(o 2
given by |b| = [(By + 62b(1))2 + b P4 -]% = Bo(1+€2A) +O(e®) with A= + b, | Similarly, (17) im-
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plies that for p > 0, one has e(2p+1) = 0, b(2p+1) = 0, P — 0 and b = 0. Tt follows that
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The solvability condition for eq. (9) reads
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where (-) = o / - d¢ denotes the averaging on the ¢ variable. One easily checks that in the sum, the term associated
T

with the indices p = 1, ¢ = 0 does not contribute. The other term is estimated by noticing that (V, f£1)> =
(av L+ vj_l) (04 fr(l) f}, and, using the explicit form of 9 fr(l), one easily checks that the only possible contribution

comes from ?50). The solvability condition takes the form
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where L is a linear operator that it is not necessary to specify. To estimate (), one considers eq. (16) that, using
the condition e = 0, reduces to e(f) = —%:? X b(f) + %3? X 8{1671)&0) where Bgl denotes the anti-derivative. One

—(0
thus consistently solves as e‘(| ) =0 and b‘(lz) = 0. It follows that, as announced, fi ) 0.
B. Propagation velocity of the wave

Applying the vectorial operator Y., m,n, [ d®v ¥, on the two sides of the eq. (9) allows one to determine the
propagation velocity A of the Alfvén wave. In the left-hand-side (LHS) of the resulting equation, one uses eq. (A.3)
and gets
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In the RHS, one has
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that involves the equilibrium parallel and transverse pressures pﬁ ) = >omen, [ vﬁFr(O)d?’v and

(O) Zmr 7n/ L FO 3y, together with the corresponding density p(® = = mrnrfFr(O)d?’v. In order to

estlmate the contribution from 27(?), one writes
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which vanishes as the result of the neutrality condition ) ¢,n, = 0 (see Appendix A). Using again the neutrality
condition one has
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To simplify the writing, the same notation is used here and in the following to denote a vector pointing along the
ambient field and its unique component (e.g. v = vz and bﬁ?) X bf) = (bﬁ?) X bf)) - Z).
One concludes that the propagation velocity A is given by

By
A2p(0) — \4| 00— pl0, (30)

where the usual Alfvén velocity is affected by the anisotropy of the equilibrium pressure tensor. In order to prevent
the system to be firehose unstable, the RHS of eq. (30) is assumed positive.

C. Wave-particle resonance

The solvability condition for eq. (10) together with the quasi-neutrality constraint . g.n, [ fg,l)d% = 0 (see
Appendix A) prescribe 7£ and 6”3) One has
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that displays a singularity when the longitudinal velocity v of the particles equals the propagation velocity A of
—(1
the wave. Near this resonance, the time derivative €20, f i ) is no more subdominant and affects the estimate of the

integral [ an,”de. We will return to this point after estimating the various terms entering the RHS of eq. (31).
Using eqgs. (B.1)-(B.2) and the divergenceless condition (21), one easily gets
S 1 1
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Separating the longitudinal and transverse contributions of the velocity-gradient, one writes
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together with the explicit expression (20) of fr(o), one gets
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In the first term of the RHS one uses eqs. (B.5) and (B.6) to write
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identifies with the electric field along the local magnetic field. One thus gets 3575,1) = R, +xr, where x,. corresponds to
8F(0)
the singular contribution driven by .S, o — This singularity results from the assumption that in the frame traveling
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at the propagation velocity A of the wave, all the dynamics takes place on a time scale O(e~*), a condition that is

broken near the resonance. One should thus define* y, = lim._,o X{ <} where X obeys
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The condition ), g,n, ffgl)d?’v = 0 then implies
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One easily checks that, as a consequence of the electric neutrality of the equilibrium state, > g n, [ R,d?v = 0. One
then computes
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where P holds for principal value and H¢{S,} = =P

variable. It is convenient to write [ x, dvy
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pressure fluctuations performed in Section III. Defining

It is at this step convenient to compute two quantities arising in the computation of the longitudinal and transverse
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D. The Kinetic DNLS equation

Proceeding like in Section IIB but at the next order, one now applies the operator Y, m,n, [ d*v ¥, - on eq. (11)
and evaluates the various terms in the resulting equation.
Using eq. (A.6), one gets

. B
S 9, / FL0, 1O d0 = 0 (02 — v uY). (56)
One also easily obtains
200
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where the second term T3 (including the sign) of the RHS is estimated by means of (B.3) and (B.4). Using eq. (30),
one gets

1 [ 9,0% =) 420, (b<° )
Ty=— [ %\ 59
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Furthermore, as a consequence of the neutrality condition and the expension of the electric current (see Appendix
A), one has
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This contribution is easily added to T. Using the divergenceless condition (21), the sum reduces to —4—8§(b|(|1)b(f)).
T

Finally, using (B.5) and (B.6),
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where only the contribution of the ions was retained in the dispersive term. Summing up the various contributions

_ _ =(1)
computed above, one notes that the terms involving b(f) cancel out. Writing fil) = f£1)>§ + f, where the brackets



(e = limp 0o ﬁ ijL - d¢ indicate averaging along the direction of the ambient field and the tilded quantities are

(1
the fluctuations about this mean value, one sees that ( f5 )>5 contributes to eq. (62).
One gets the dynamical equation

~ P 0 P
aTbS?) + 68&5(1' X b(f)) —BoVL (W) + 8*5 [(m + <U>E)b5?)} =0, (63)

with a dispersion coefficient § given by
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Here the subscripts e and i refer to electrons and ions (assumed of a unique species) respectively. The ion density at
equilibrium has furthermore been replaced by the total plama density. One also has defined

ﬁ:(%Jer TN - ML ) (65)

where the magnetic fluctuations E‘(ll) along the ambient field is prescribed in terms of the transverse component b(f) by

the divergenceless condition (21). When dealing with Alfvén pulses whose extension is comparable to the longitudinal
scale €2 retained in the definition of the parallel stretched coordinate, mean fields are zero and the system is closed.
The resulting system was derived by Rogister® using a Fourier space formalism. The presence of Landau damping has
important physical consequences. In particular, the criteria for modulational instability in the direction of propagation
are strongly modified by this effect effect®!? and new dissipative structures were also reported.2’ These authors also
notice the suppression of the resonnance predicted by the fluid theory for 3 = 1, that breaks the DNLS scalings.?! A
quasi-resonance survives only in the special case when the temperature of the electrons strongly exceeds that of the
ions.?? Note that the action of the Landau damping on the Alfvén waves is mediated by the coupling with ion-acoustic
waves that are directly affected.

When dealing with Alfvén wave trains that include a large number of pump wavelengths of order ¢~2? the mean
fields are no longer negligible. It is given by

(1)
_ B§ |b(f)|2 dl 1 2 VI, s
e = g0 (e — 205 >5)—2Ap(o)gmmr [ =22 = 2] @i (66)

that can be viewed as a convective velocity which locally corrects the Alfvén wave speed. Its computation requires

the estimate of <?£1)>£ by pushing to higher order the expansion of the Vlasov-Maxwell system.
Furthermore, eq. (63) requires the solvability condition

BO —(1)
2 +me, / YL (7D e = (r) (67)
where I'(7) denotes a function of 7 only that will be determined in the following. Indeed, the quantity V  I' arises
as a source term in the equation for the transverse magnetic field bf). Since, from eq. (21), V - <b[f)>5 = 0, one

obtains A I' = 0. For solutions decaying at large transverse distance or obeying periodic boundary conditions, no
mean field <bﬁ?)>5 is thus driven.

III. RELATION WITH HYDRODYNAMIC QUANTITIES

For a physical interpretation of the various contributions to the long-wave equation, it is useful to compute a few
hydrodynamic quantities and in particular the pressure perturbations in the directions transverse and parallel to the
local magnetic field. Note that the pressure disturbances arise at an order of perturbation where the local distortion
of the magnetic field line cannot be neglected. The fluctuating parts of the heat fluxes that play an important role in
Paper II are also computed in this section.



10

A. Hydrodynamic velocities

The velocity component V; = v — (Tb|2b) b transverse to the local magnetic field b = (Bo + €2b|(‘1) , ebg?)) + O(e3)
reads
V= (= (o 00+ e 232 et —ez(%é’(f) W)+ o) (6
The corresponding hydrodynamic velocity U, = Ezinmi;”f IV}T{;? i s thus
UL = (AlbgégeQ : ;Z b<0>) +O(). (69)

The leading order component in the RHS of eq. (69) is the characteristic signature of an Alfvén wave and also
identifies with the electric drift velocity c(eﬁ?) x BoZ)/B3.

The velocity component along the local magnetic field V| = —v| b| is given by
2
— € 7.0y _ V02 3
Vi= o+ g, - 1) = gz lbu 17+ 0(€), (70)

>, mone  Vifd
> meng [ frd3v .

¢ S0 1 ©
= — (¥, - )] g3 3
Ip(o)zr:mrnr/{mfr +Bo(vl by ) fy }d v+ O(?)

pl0)2
1 —(1) Nan
2 3
— ¢ (W E mrnr/vufr dv

Furthermore, the fluctuating hydrodynamic velocity u = e2u‘(|1) + O(€?) in the direction of propagation (or equiv-

and the corresponding component of the hydrodynamic velocity U =

) +O(e). (71)

0

alently along the ambient ﬁeld) is given by
il = 7y = L Dt A2 72
p(o ZanT o f, dv= POl Zmrm (v — )f v+ FOR (72)
where from eq. (38),
7(1)

b
ZmrnT/ - v”)f d3v = 0L L. (73)
T BO
One thus gets the relation also obtained in the Hall-MHD context?
— — + =0. (74)

)
B. Transverse pressure

1
One can expand the transverse pressure p| = Z My N / i(VJ_ —Uy)?f.d%v in the form p, = pﬂ?) + 62p5_1) +0(e3)

with p(j) = <p(j)> + p . One easily gets

7 - p0 (0) 2 L (0)\2
(1) W) oy Ay elb P (Wb
m—Zmrm/{ ZRSNNILE PR L

(0) 2

U¢ (1) Bg o
= E — | = . 75
- Mt f (47r) 2B(2) (75)
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It follows that
V=2V 4N - M2LHA (76)

and
(0))2
7Oy g3y (B0 Sl P
e = Zm’"”r/ fi ed®v — <47T 2Bl (77)
Note that f)ﬂl ) contributes to P that enters eq. (63) for the transverse magnetic field.

C. Density and longitudinal pressure

The longitudinal pressure is py = Y., myn, [(Vj — U))? frdv = ¥ +e2p (1) + O(€®) with

P
. v, —(1)
pl = Zmrm/(— (@062 = o] FT(O)+2B—|L(UL-bf))f,(O)+vﬁf,, ) d

0 0 | (1)
=@ - ) l +Zmr”r/ vp fr© dw. (78)
Note that U does not contribute to p‘(ll).
Writing p( ) = <p|(‘l)>§ —|—p‘(|1), one has
0 0 (1)
Defining the operators
< gt *
0= 27r¥mrnr/o 7grd(7) , P= ZWEqrnr/o QTd(7), (80)

one also expresses the leading order contribution to the fluctuating density and parallel pression perturbations in the
form

=(1)

) = Zmrn,« fr o= (p +0-PLTIM)A (81)
B = [pﬁ‘” —p? 4220 - PLIM)A
— ) =) A+ 22 — O D). (52

D. Heat fluxes

1
The transverse heat flux is defined as ¢, = Zmrn,ﬂ/g(‘@ — UL)2(VH - U”)f,.d%. To leading order, q, =

Qq(ll) + O(€?). A straightforward expansion leads to

(0) (0))2
@ _1 2 (1) 3 Py M 3 © (0L
! 2[Erimmr( / A o - 275 [ de) + 260" - p) -] (83)

In order to compute the fluctuating part of the transverse heat flux, one uses eqs. (38)-(42) and finally gets

(1) ~1)

1 0 [P P T

i = (5 -Ch -4 (84)
an P
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The parallel heat flux is ¢ = >, m,n, [(V} — U‘|)3frd3v. Again to leading order, ¢ = €2 q|| ) 4 O(€?). Expanding
as above, one gets

(1 _ 1) ;3 L (0) 43
q Zmrnr[/v”f dv+/3 Gy fr )d }

1 -1
+6Ap, 0) |232 - 0) PO Zmrnr/vufg. ). (85)
For the fluctuating part, one has
~1) RPN WV VIR
q :)\[31)" 552 — (@ + 2 p A+ 2250 — 30 ) } (86)
0
or
~(1)
o
=0 _ 0 [Pl
4= | 3W T2A ) (57

IV. EVOLUTION OF THE MEAN FIELDS

A. Mean field contributions in the KDNLS equation

2
ducing the mean velocity in the direction of propagation (or of the ambient field)

1 2
The term ———— Z myng | [(v) —A)* = U—J‘Kfil)kd?’v in eq. (66) is expressed in a convenient form when intro-

1 1 —(1)
(uj e =D men, 0 / o (fr ed®o, (88)
and also the mean perturbation of the plasma density

(pMye Zmrnr/ N 5d3 (89)

both arising as O(€?) contributions. One easily shows, using eqs. (79) and (77) that

_ﬁ zmrn,«/ {(v| — )2 - 2] <f(1)>5d v

1 (1) (1) Wy AW 1 @) PO (B0 1)
2)\/)(0) (<pJ_ >§ - <p“ >£) + (u U ) — 5 p(O) + )\p(o) (pH + 87T) 2BO . (90)

On the other hand, using eq. (77), the solvability condition (67) is expressed in terms of the mean pressure
fluctuations transverse to the local magnetic field in the form

7 (e =T(7) (91)

where, as already mentioned, I'(7) is a function of time only that is to be determined. Equation (91) relates the mean

p(O)
longitudinal perturbation <b‘(|1)>§ to <|§_B|§>£'



13
B. Determination of the mean density
Starting from the definition of the mean density (p(*))¢, one uses eq. (12) and gets
==X mn, [ e (autteos ot + 0.(sin o)) do, (92)

If follows from egs. (B.5) and (B.6) that

1 oF)
e

; (1)4(0)
Oy lfeon T2 + 0. 05 )e =~V OHNDEO + 5 0r0f e TG
1 0)12;(0) _ 1 0). 571
~qopg v+ (B0 POD)e DIDTDE® + 29, - DT e (93)

—(1 ~(1)
Note that fi ) contributes only by its fluctuations f, . Furthermore, due to the presence of the operator D acting

—(1 ci1 . s . . . . . .
on f 5 ) within the integral on the velocities, no singular contributions arises. It is thus convenient to use eq. (38) and
one finally gets the simple relation

o e, e

T op@ T By (94)

C. Evolution of the mean longitudinal velocity

Using again eq. (12), one expresses the time derivative of the mean hydrodynamic velocity in the direction of
propagation in the form

(0)8 (1) Zmrnr/vﬂvl( <<COS(Z)f( )>>€ +0, ((51n¢f(2))> ) v

4) 5.0) = (2) 5.2 = ) (0)
’UleJ_ 8f,« ULXbJ_ afr v X 8f 3
— g T + + dv.

- n /UH< c v c v c v >§ Y (95)

In the second integral of the RHS, the term involving b(f) does mnot give any contributions. The

two other terms are estimated using the expansion of the electric current presented in Appendix
1 1

B. The second term gives —be)x(ﬁc\xagbf)):—zb(Q)-ab(o). Similarly, the third term is
™ T

1

E<b(f) 'agb(f) - (b(f) V)bt )>5 where, from eq. (21), (b} b . v )b (1)> —

fi<b(0) x (@ x 0bF)) + V1 x b{V)e = — n

7I
V- (U7, Tt follows that

. 1
P D0, (uf)e = Zmrnr / o (ay<<cos OF V)¢ + 0. ((sin ¢fg2)>>£) d*v+ -V (b)) (96)
where the first term of the RHS is estimated by means of eq. (93). As a consequence,

=S [ogor (0tcos652)e + 0-{(sin 6 ))e) do

L 0 1), (0 0)2,,(0
= gl —pD)V - 00 = - (PR
1 02 1=(1)

Lo 0y mrnr/ M=) = =2+ ] PV 97)

Taking into account that <b(f)>g = 0 and using (73), (54) and (55), one finally gets

1 ~

Or(ulye = ——v - (Pb 98
(e = gy Ve (P01 (98)

with P defined in (65).
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D. Evolution of the mean pressures

2
In order to close the system, it is necessary to determine the evolution of Z My Ny / %Gil)k d®v and of
- ( )
Zmrnr /(Ul| - )‘)2 r U = Zmrnr/v“ >§ d31) - 2>‘p(0) <u|(‘1)>f + /\2 <p(1)>f (99)
Using (12), one writes
(T, — _u. (o (2) 9. ((sin & £
(fr Ve = —vL (Oy((cos @ fr7))e + O=((sin b fr7))e
(5) p(®)
_r (o) L PV g Ry, O ) L PXDTN g @
(@ ) VeE e = o 3T (e + ) Ve, (100)

" ptq=4

that is substituted in Zmrnr/ 0 <f(1)> d*v and 3 m,n, fvﬁaT <?£1)>§ d3v. The first term is given by eq.
T

v
L v,

together with mrnrfviD;'Dl_DF,go)dSU = 716)\(%“? + 2(p|(‘0) p(f))), o mrnrf’u”leF?EO)dgv = 72)\p|(‘0),

3F
(93) and requires to estimate the coefficients Y, m,n, [ viDFr(o)d?’v 8/\pj_), Z my n,/ d —Sp(o)

aF(O)
Zmrnr/v”m_ e d3v = —2p‘(|0) and Y, m,n, fUﬁUJ_D;D;DFr(O)d3U = 32\ (pﬁo) — pg(_))). Furthermore, from
vy

(39), (40) and (41), one has

5 ) g3 (0) Lz PO RN D
Zmrnr/vll)fr Sp = —16Ap| A — 8>\( +2p” = 3p] ) 2#32 (101)

. 0

and
~(1)
Zmrnr/vﬁlefr dPv = —2)\ (p‘(lo) — 4p(f)> A
I
By o0 oo (TP 250 5

+2’\<QE +9p(” — 8p'’ ) s ) QAEmrnr/vJ_fr v (102)

where the last term of the RHS is given by eq. (55).
When considering the contribution of the electric field, one notes that e = 0 and also that e®® and e® (which

are parallel to the propagation) do not contribute to [ v2 0. (f( )> d®v. nor to Y. m,n, fvﬁ(‘)T <f£1)>5 d3v as easily

)

seen by integration by part and use of the fact that ffl and Fﬁo do not enter the electric current (see Appendix A).

Similarly, e (that is transverse) does not contribute to Y m,n, fvﬁaT <?£1)>5 d3v nor to [v? 0, <?£1)>§ d®v. As a

consequence, the electric field only enters Y. m,n, v}, <f5.1)>5 d®v through ¢!” and e{?. One gets

<qunr / A Vo 1P+ () Vo, fO)dP)
__c/. @ (0) (0) 1 4 = (2)
= 27r<eJ‘ (xx@b )+e (leb” +xx8§bL)>£
_ 1 2\ _ A (1) (0)
_ 47TaT<|bL | >6 V. <bH b >€. (103)
Furthermore, it is convenient to write

(0% b®)) Vo £ = (T % bP) - Vi, 1) + 0y (@ x bP) - Vo, [ + (T % b0y, £, (104)
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The first term of the RHS rewrites —b‘p )8¢, @ and thus does not contribute to the integrals under consideration
—(1
( )) 3v. One thus rewrites

(F)e dPv and the third one to [ Y
(9)
(105)

) dv

The second one contributes to f v

2, ) / S Ofr
_Zpe),
LR CTIRG a¢

b(P) )
/Ui% Vo, fOd0 =
b(P) 2
/vﬁu Vo, FOPBy = Zp®) . /U”M< i ) dv (106)
c oler
(9)
where (7 8;5 ) with ¢ = 0, 2 and 4 are computed in Appendix B
One easily gets from egs. (B.1) and (B.2) that
9 (0)
<b(4) (7 £¢ >> 5B, L 6@ by RO, (107)
Similarly, from (B.5) and (B.6), one has
@ - 0f 1 @) 4,0 (0)
(O 1%55)) =~ i 0 20l — v DES
(0)
L@ o Oy pp@ L @ g1 40y 9Fr
——=(b;"’b b DF” — —(b 0 0:b
232<H 1 x b ")¢DE; QBO<L X O¢ 1)e EoN
—+(1)
1633<|b(0)|2b(2) < b eDF Dy DF + 5= <b(2) bODF ). (108)

Furthermore, using again Appendix B

(4)
(o2 @2) = - { o - N
oFY

IR, b(1)> DE” — E&O iy >£ vy
2 [<b(f> .7,

1
(o 85b(f)>€DFT(O)

4BQ<|
+7D<357i1) b(f)lzu

~ i (W0 Poa) DTDEC] 4 g on (W) PO}
(“)F(O))}

(0) (0)
1 4) ;0\ OFr 0) _ ,(4) OF; 7
+2B0 [C<el by >§ ovy +<bL x by >§< Y ov oL (9UH
—(1)
(0) of, >
13

@012\ 9 ppo) _ 0 o -1
<€H IbJ‘ ‘ >§ a’UH " 2B()<b 8 8 bJ— ov (R

E

top2
P, e
16133<‘b(0 b = b<0))> DDy DFY + 4 Bs <A—vn><b\(|1)35|b(f)|2>5DF§°)
b(Vb x b(2)>€DF§O) n %@ﬁl)b(f) " aflaTb(LO)>Eaa};i0)
(109)

2B2< l
—pf <(b<0>2 b%)(cos 26 9y fP) + 26000 (sin 26 Iy f<3>>>5

4B
where the quantity ¥ need not to be explicited since it enters a term that does not contribute to the integral arising

in the computation of the pressure tensor. One is then led to compute
<(b(0)2 b012) (cos 26 9y £ ) + 26060 (sin 26 9, f(3)>>5
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_ 1 (0)(2(0) 0124, (1) 0)
*4BOQT{< (B 1269 + 21p” 20 >£}’ULDFT

L /102000 o o914 1(0) o 1 ©)
N DF
4Bg<|bL F(oL7 X 0 0rb, )>5(am UL)
1 020 o @\ p-pp(0)
4Bg<|b 26 x >§D1 DF!
+Lp- <|b<f>|2(b<0><cos¢ B fP) + b (sin ¢ 6¢f(2)>)>
2B, v r : r )/
1

L s (03 _ 305002 cos @)
6B0D3<(by 360502 (cos 3¢ D5 )

B0 — b0 {sin 360, /7)) (110)
where

(1 (04 (cos & D f2) + (0 (sin 6 D, fr(2)>)>§ _

(0)
L /00)2,00) 4 (2) © _ L /002,00  a-14 ;0\ OF
2BO<|bL 260 b2 >§DFT 2BO<|bL 26 x 910, b" >€ e (111)

and

<(b(y°>3 — 3b0512) (cos 3¢ D £ ) + (36D2©) — b0)3) (sin 3¢ 9, f 2 >>§ =0. (112)

At this point, it is important to check that the system is closed in the sense that the quantities bf) and bf) do not
enter the quantities of interest. Indeed, cancelations take place and one gets

,qur 3 <f>./ku< a£;:>>> o

p+q=4
e ol 20 (0P + (o W),
o [0 vuRY) - v <|b‘°>|285b“’> DIDRSO)}

QQ
b(o) DF(O) ¢ (3) b(o) DF(O)
<a | | > " 232< | | > 8’0”

+

430
—(1)
L /) o a=1g 00y
——{b 0-10.b
2B0< 1 % 3 1 GvL >g

1 (0))24,(0) 0)124 7(1) + (0)
THOR (V- (0 Po) + 20 o >JD2 v, DF

©12(0) 5 515 ;O\ pr+ (2 _ L\ ppo
+1633<\b 2(6 x o tor0f )>§DQ ((M M)DF

<\b(0)| ( B\ x 8g167b(f))>£DSFD; a;;,ﬁ? }d% (113)

+1GB3
where one may substitute <|bg? |285b|(‘1)> = —<|b(J(_))‘2VJ_ ~b5?)>€.
3
We first note that in the above equation, no contribution originates from the terms involving the quantitiy

b(f) X 8{ laTb(f), because of the condition of quasi-neutrality that holds at the corresponding order. The obser-

-
vation is straightforward for the term containing f, ( ). In the case of those involving F,(-O)

computed. One checks that va_UHB%HDFT(O)di)’ 2)\fF( ) dBo , Jviy Dy (

, a few integrals must be
— L) PO = —8x [ BV and

ov |
_ oF®
1 ov, —

Jviv DD —8) [ F{”d3v. One then computes the coefficients

2 1 2 D PFO) g3y — 2 (O _ (0
C;mqrm/vl%—pl DFEVd%v = Fg(pL D ) (114)
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2 1 + 0) 73 A 0)

— Z mqrnr /UHUL’DQ ULDFrg )d v = 78pj‘ . (115)

—(1) . . ~(1)
one notices that only the fluctuations f,

Concerning the remaining contributions involving f

(1
value ( f£ )>5 contribute. One writes

around the average

nr <1
/U”’Ul U — <8 f |b(0)| >

4BOQ
= g Somene [l =) = o) (o = 02T )

A vl o -1 (0))2
QWZngmrnr/d(Q)vL<(/8§fr vy )| >E. (116)
One estimates the first term I; of the RHS of the above equation by means of eqs. (39)-(41), in the form
_ 1 9 V| aF,EO) Ui BF,(O) (1)1,.(0) 2
= g S Jlont =n -] - @ - nET+ el LU CL R
A
BS (5]?(0) _ 2p(0))<8 b(1)|b(0)| > (117)
Using (52), one estimates the second term I (without the minus sign) as
2N (0)/1,(0) 2 27\ f_ (0) qr 1
= gl (WO Poaf) + Zm,nr/d (PG (% - 5 e a)gea)
2 0) © A 0)
= 57 PO {p? o >£+B—(2)<|b<L (W = Mm2L) o > (118)
One then has to estimate
~(1) =) =(1)
3, _ 2 3 2 3
7229 qrn,,/vlvﬂf d°v = B, Zmrnr {/vl(m -\Nf, d v+)\/vlfr d v] . (119)
Using (39) and (40), the first term J; of the RHS is rewritten in the form
1 ) v R 1, \b(o 21 o
i —BozT:mrnr/vL(m -N[-% G A+ 5 DIDE e o
(0)]
4\ »° A B3 (0) (0) by
= A — 2— +6p,’ —4p 120
BO + By ( i T P 282 (120)
and the second one J; is directly obtained from (55)
2) 1 B3 |b |2 (0) 2,-1\ 4
h=g e (2;0L +N - ML )A}. (121)
Putting together the above expansions, one obtains
5y /”3<f<1>> o = (2] <o>_Bj>)a <|b(f’l2>
oMt [y M e e SO T AT TP T g )TN BE /e
pb) p©)
Oy (I 0 (A
+2p00- BO> +/\(4 +2p )V, (A%
LR <b(f)(N - Mzc-l)ﬁ> - )\<A(/\/' — M2L7Y) A> (122)
0 By 3 e

B
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and

”H Ty gy — b © o s /100
Or Zmr r/ fried v=D) ar<370>§+( —2p D) )8T<Tg>§

+2)\<A(/\/— M2£_1)85A>£. (123)
This leads to dynamical equations for the mean pressures. Using
‘b(f)|2 _ ! Nb(f) A 2p—1\9 A
af< 282 >5 = 20 {VL ' <P§O>§ <A(N ML )(’9§A>J, (124)

one gets

1/¢ P _
RS URES <A>5) =0. (125)

For the mean parallel pressure, one has

(1) 1) 7
67(<p|(0)>5 - 3<i)(0)>5 +2<A>5> - 2<2\)< W= ML )85A>£' 120
P Py

E. Mean longitudinal magnetic perturbation

Using eq. (94) and eq. (125), one has from eq. (91)

(1)

d B} o by e

0 = o[ (32 +00) (W + 0 =] (127)
B oy P BR L o (M)
=0r|(g2+00) gt + (o) ) (128)

Averaging over the entire three-dimensional space and using the property of mass conservation to get rid of the density
contribution, one obtains

Ly = - QA;(())(BO + (0)><E(N—M2£’1)6§A> (129)

dr £m,¢

where (-)¢ ¢, holds for the averaging on the full spatial domain. Substituting on the LHS of eq. (127), one gets

R R TN (1 YR Y P PR
Bo :_2(1+M)[ 252 +)\p(0)<A(N_M£ )85A>5,n,<] (130)

with 6, = 8mp L) /B2. Note that this total pressure balance condition differs from that obtained in the case of a
polytropic gas, not only by the presence of kinetic effects but also by the coefficient (2 + 5,)/2(1 + (1) instead of

1/(1+2y715).

F. Evolution of the mean field in the KDNLS equation

From egs. (90) and (94), the mean field (U)¢ entering eq. (63) satisfies

o (0~ f)e)). (131)

- (U)¢ = 0; (<U\|>£ T <b\(| e+ 22p(0

1
oo =) (e +

Expressing the time derivatives arising in the RHS as obtained in the previous subsections, one finally gets

0. (U = (0) (vL < 13;0 >g - <A(N - M2£’1)85Z>§) - %</~1(N - Mchl)ag@mg, (132)
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with

¢y = (133)

1 <12+18ﬂL+5ﬂi> o 1 <(2+m)2)
2+ 6. — B\ 8(1+41) © P T 248 -8, \8(1+ 1)

where in addition to the previously defined parameter 3, one introduced 3 = 87rp‘(|0) /B2. Note that when kinetic
effects are retained, a (time-dependent) convective velocity (U)¢ is driven even in one space dimension.

V. CONCLUSION

Defining the operator K = N — M2L~! [see eqs. (50,53) together with eq. (47)], one finally obtains that the
dynamics of a long Alfvén wave train propagating parallel to an ambient field is governed by the closed system

o ;b Bo

o, 9 )b + = P +50 b\ 134
( +{U)e 5) +3§(2)\p(0) op® VT ss(fﬁx ) (134)

: SO neo N i
PO (U =c1 [V - <PB—O>E - <AIC8§A>£ - (:2<AIC65A>£ o (135)
deb” + V. b =0, (136)

R ©
with A = B— + 5 B2 , P = (4— +2p + IC)A and the previously defined constants ¢; and co. One also establishes
0

that the conservation of the energy (kinetic + thermal + magnetic) E = pu®/2 + b*/87 + p1 + p;/2 is recovered at
the level of the asymptotic model.

Several problems can be addressed using the above multidimensional KDNLS system for wave trains. One of them
concerns the influence of the Landau damping on the filamentation phenomenon.' In the Hall-MHD context, the
envelope formalism predicts that (absolute) filamentation of long Alfvén waves requires the condition § > 1. Direct
evidence of this effect was demonstrated by numerical integration of the three-dimensional DNLS equation with mean
fields,'? and also by comparison with direct numerical simulations of the Hall-MHD equations.'3

Furthermore, the above system that provides an asymptotically exact description of long Alfvén waves, can also be
used as a benchmark for Landau fluid models proposed to describe the large scale dynamics of a collisionless plasma
permeated by a strong ambient field.! Such systems are constructed as fluid moment equations and can be viewed as a
generalized magnetohydrodynamic description retaining linear Landau damping through a semi-heuristic approach.?
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APPENDIX A: CURRENT AND CHARGE BALANCES

Expanding eq. (3) to the successive orders, one obtains the various contributions to the electric current j =

>, @y [vF.d%v, in the form Y g.n, vaT(O)d?’U =0, >, qn, fvfr(o)d?’v =0, Y, q¢n, fvfr(l)d% = 0. Non-zero
contributions are obtained at the higher orders. One has

4 A
% qrmy /ULffz)dg’v =X 8565?) + Zﬁfef). (A1)

r

O _ 25,50,

Since e}’ = the last term in the above equation, associated with the displacement current, is usually

negligible. One gets

47
c

Gy /(55 x 1) [P dP = —9b! (A-2)

s
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or, using the identity Z x ¥ = 04V,

4m . 3fq£2) 0
- d q,nr/m_ 86 d3v:8§b(l). (A.3)

The next two orders of the expansion give

4% anr/v||fT(3)d3v =V, X bﬂ?) (A.4)
and
47” Gy / T P =7 x 9.0 + (V) x blﬂ” 7) (A.5)
) ;
4% qmr/ﬁl agf:) = 0¢b 7 — 7 x (V1 x bV3) = 0cb? — Vb (A.6)

ka
Similarly, expanding the Gauss equation (4) at the successive orders leads to the electric neutrality con-
-1
ditions Y ¢mn, = 0 and > gqn, f fi )d3v = 0. Pushing further the expansion, it immediately follows
that the condition of neutral locality is also obtained for the contribution arising from fT(-z). The first non-

A
zero contribution reads 4w )" qrnrffr(:g)d?’v = V- e(f) = -V x b(f). Comparing with (A.1), one obtains
c

A\ 4 A
Z qrny / f,gs)d?’v = () - Z qrny / v”f,(,?’)d?’v that is negligible because of the factor —.
c) ¢

C

APPENDIX B: AZIMUTHAL MODES OF THE DISTRIBUTION FUNCTION

The hierachy (6)-(12) implies that FT(O) is independent of ¢, fT(-O) involves only the mode e*?, fr(l) the modes e%*¢
and 1, fﬁz) the modes €%*¢ and e'?, fﬁg) the modes ¢*¢, €2 and 1, f7§4) the modes €%?, €3¢ and e'® (together with
their complex conjugates), etc. More generally, the fﬁp )’s are obtained recursively in terms of the f,(-q)’s with ¢ < p.
The computation of (e'? fﬁp )> where (-) denotes the average on the ¢ variable involves the determination of various
modes of fﬁ‘n with ¢ < p. One is then led to establish the following estimates

) 1
0y — _— O pp0) B.1
<cos¢>aqb ) 55,0 DFr (B.1)
1
— ——bODE© B.2
(sin¢ ¢f ) = 55, v PFr (B.2)
(cos 2¢ ¢f<1>> 2B2b(0>b<0>D DFY (B.3)
(sin 20 99 f1>> 432 02 —p2yD_DF) (B.4)
1
(cos 6 2 £2) =( M€\ — ) 9eb®) + —=b2) — o b<0>)DF<0>
9 2¢, B2 2% 9By, 2B2
1 51 (O)BF" (0)127,(0) >+ (0) 0) (1)
727]3065 d-b o 1633\1) 20D Dy DE! +230 Df, (B.5)
D)
- (2) _ Ml pO _ L g 2 SHO)DEO
8F 1 —(1
97 l9.p® 0120 p+p—pp© _ 2 o pFt)
+3 a b oo 16Bg\bL *b{0D3 Dy DF 2B0by Df, (B.6)



(cos 3¢ 75 0 sy _ 1633D Dy DF® (3b§0>2bg0> fbg0>3) (B.7)
1
9 4@ — D DFO (350502 _ p(0)3
(sin3o 5 0 sy _ 165372 i DF) (Sby b2 — ) (B.8)
(cos 2¢ f(3)) {1( —v)[“)5<sm2¢ f1)> (8 b(o) 8b(0))DF(O)}
0 Q, 12 I 0o 4B, z r
1 )
©9-15 50 1 O 5=1g_p® _1\ppo
15 [b 0;10:b + b0 10,1 }(aw M)DFT
1 2)7,(0 2)7.(0 — 0 (1) 1
+@(bg>bg>+bg>bg>)pl DEO — bH <c082¢ 1 >>
1 (0) @\ _ 0/ win b ? @
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Proof of equalities (B.1) and (B.2): These formulae are direct consequence of eq. (7) and the expression of e(©).
Proof of equalities (B.3) and (B.4): Equation (22) is rewritten
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and the results follow directly.
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The multiplication by cos ¢ or sin¢ and the averaging on the ¢ variable lead to the introduction of the quantities
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which, by using (B.3) and (B.4), leads to (B.7) and (B.8).
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